Ranking Entities on the Web using Social Network Mining and Ranking Learning
نویسندگان
چکیده
Social networks have garnered much attention recently. Several studies have been undertaken to extract social networks among people, companies, and so on automatically from the web. For use in social sciences, social networks enable analyses of the performance and valuation of companies. This paper describes an attempt to learn ranking of entities from a social network that has been mined from the web. In our approach, we first extract different kinds of relational data from the web. We construct social networks using several relevance measures in addition to text analysis. Subsequently, the relations are integrated to maximize the ranking predictability. We also integrate several relations into a combined-relational network and use the latest ranking learning algorithm to obtain the ranking model. Additionally, we propose the use of centrality scores of companies on the network as features for ranking. We conducted two experiments on a social network among companies to learn the ranking of market capitalization, and on a social network among researchers for ranking of researchers’ productivity. This study specifically examines a new approach to using web information for advanced analysis by integrating multiple relations among named entities.
منابع مشابه
RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملWeb pages ranking algorithm based on reinforcement learning and user feedback
The main challenge of a search engine is ranking web documents to provide the best response to a user`s query. Despite the huge number of the extracted results for user`s query, only a small number of the first results are examined by users; therefore, the insertion of the related results in the first ranks is of great importance. In this paper, a ranking algorithm based on the reinforcement le...
متن کاملA new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملRepresenting a method to identify and contrast with the fraud which is created by robots for developing websites’ traffic ranking
With the expansion of the Internet and the Web, communication and information gathering between individual has distracted from its traditional form and into web sites. The World Wide Web also offers a great opportunity for businesses to improve their relationship with the client and expand their marketplace in online world. Businesses use a criterion called traffic ranking to determine their si...
متن کاملارائه الگوریتمی مبتنی بر یادگیری جمعی به منظور یادگیری رتبهبندی در بازیابی اطلاعات
Learning to rank refers to machine learning techniques for training a model in a ranking task. Learning to rank has been shown to be useful in many applications of information retrieval, natural language processing, and data mining. Learning to rank can be described by two systems: a learning system and a ranking system. The learning system takes training data as input and constructs a ranking ...
متن کامل